Special Conditions: Learjet Inc., Learjet Model LJ-200-1A10; Interaction of Systems and Structures

Summary:

These special conditions are issued for the Learjet Model LJ-200-1A10 airplane. This airplane will have novel or unusual design features associated with systems that, directly or as a result of failure or malfunction, affect structural performance. The applicable airworthiness regulations do not contain adequate or appropriate safety standards for these design features. These special conditions contain the additional safety standards that the Administrator considers necessary to establish a level of safety equivalent to that established by the existing airworthiness standards.

Table of Contents

Dates:

The effective date of these special conditions is February 3, 2012. We must receive your comments by March 26, 2012.

Addresses:

Send comments identified by docket number FAA-2012-0154 using any of the following methods:

Federal eRegulations Portal: Go to http://www.regulations.gov/and follow the online instructions for sending your comments electronically.

Mail: Send comments to Docket Operations, M-30, U.S. Department of Transportation (DOT), 1200 New Jersey Avenue SE., Room W12-140, West Building Ground Floor, Washington, DC 20590-0001.

Hand Delivery or Courier: Take comments to Docket Operations in Room W12-140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC between 8 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

Fax: Fax comments to Docket Operations at (202) 493-2251.

Privacy: The FAA will post all comments it receives, without change, to http://www.regulations.gov/, including any personal information the commenter provides. Using the search function of the docket web site, anyone can find and read the electronic form of all comments received into any FAA docket, including the name of the individual sending the comment (or signing the comment for an association, business, labor union, etc.). DOT's complete Privacy Act Statement can be found in the Federal Register published on April 11, 2000 (65 FR 19477-19478), as well as at http://DocketsInfo.dot.gov/.

Docket: Background documents or comments received may be read at http://www.regulations.gov/at any time. Follow the online instructions for accessing the docket or go to the Docket Operations in Room W12-140 of the West Building Ground Floor at 1200 New Jersey Avenue SE., Washington, DC between 9 a.m. and 5 p.m., Monday through Friday, except Federal holidays.

For further information contact:

Todd Martin, FAA, Airframe and Cabin Safety Branch, ANM-115, Transport Airplane Directorate, Aircraft Certification Service, 1601 Lind Avenue SW., Renton, Washington 98057-3356; telephone (425) 227-1178; facsimile (425) 227-1320.

Supplementary information:

The FAA has determined that notice of, and opportunity for public comments on, these special conditions are unnecessary. The substance of these special conditions has been subject to the public comment process in several prior instances with no substantive comments received. The FAA therefore finds that good cause exists for making these special conditions effective upon issuance.

Comments Invited

We invite interested people to take part in this rulemaking by sending written comments, data, or views. The most helpful comments reference a specific portion of the special conditions, explain the reason for any recommended change, and include supporting data.

We will consider all comments we receive by the closing date for comments. We may change these special conditions based on the comments we receive.

Background

On February 9, 2009, Learjet Inc. applied for a type certificate for their new Model LJ-200-1A10 (hereafter referred to as “Model LJ-200”) airplane. The Model LJ-200 is a business class aircraft powered by 2 high bypass turbine engines with an estimated maximum takeoff weight of 36,000 pounds and an interior configuration for up to 10 passengers.

The airplane is equipped with systems that, directly or as a result of failure or malfunction, affect its structural performance. Current regulations do not take into account loads for the aircraft due to the effects of system failures on structural performance. These special conditions define criteria to be used in the assessment of the effects of these systems on structures. The general approach of accounting for the effect of system failures on structural performance would be extended to include any system whose partial or complete failure, alone or in combination with other system failures, would affect structural performance.

Type Certification Basis

Under the provisions of Title 14, Code of Federal Regulations (14 CFR) 21.17, Learjet Inc. must show that the Model LJ-200 meets the applicable provisions of part 25, as amended by Amendments 25-1 through 25-127 thereto.

If the Administrator finds that the applicable airworthiness regulations (i.e.,14 CFR part 25) do not contain adequate or appropriate safety standards for the Model LJ-200 because of a novel or unusual design feature, special conditions are prescribed under the provisions of § 21.16.

Special conditions are initially applicable to the model for which they are issued. Should the type certificate for that model be amended later to include any other model that incorporates the same or similar novel or unusual design feature, these special conditions would also apply to the other model.

In addition to the applicable airworthiness regulations and special conditions, the Model LJ-200 must comply with the fuel vent and exhaust emission requirements of 14 CFR part 34 and the noise certification requirements of 14 CFR part 36; and the FAA must issue a finding of regulatory adequacy pursuant to § 611 of Public Law 92-574, the “Noise Control Act of 1972.”

The FAA issues special conditions, as defined in 14 CFR 11.19, in accordance with § 11.38, and they become part of the type certification basis under § 21.17(a)(2).

Novel or Unusual Design Features

The Model LJ-200 will incorporate the following novel or unusual designfeatures: systems that affect the airplane's structural performance, either directly or as a result of failure or malfunction. That is, the airplane's systems affect how it responds in maneuver and gust conditions, and thereby affect its structural capability. These systems may also affect the aeroelastic stability of the airplane. Such systems include flight control systems, autopilots, stability augmentation systems, load alleviation systems, and fuel management systems. Such systems represent novel and unusual features when compared to the technology envisioned in the current airworthiness standards.

Discussion

Special conditions are needed to require consideration of the effects of systems on the structural capability and aeroelastic stability of the airplane, both in the normal and in the failed state, because these effects are not covered by current regulations.

These special conditions require that the airplane meet the structural requirements of subparts C and D of 14 CFR part 25 when the airplane systems are fully operative. The special conditions also require that the airplane meet these requirements considering failure conditions. In some cases, reduced margins are allowed for failure conditions based on system reliability.

These special conditions establish a level of safety that neither raises nor lowers the standard set forth in the applicable regulations.

Applicability

As discussed above, these special conditions are applicable to the Learjet Model LJ-200-1A10. Should Learjet Inc. apply at a later date for a change to the type certificate to include another model incorporating the same novel or unusual design features, the special conditions would apply to that model as well.

Conclusion

This action affects only certain novel or unusual design features on one model of airplanes. It is not a rule of general applicability.

The substance of these special conditions has been subjected to the notice and comment period in several prior instances and has been derived without substantive change from those previously issued. It is unlikely that prior public comment would result in a significant change from the substance contained herein. Therefore, the FAA has determined that prior public notice and comment are unnecessary and impracticable, and good cause exists for adopting these special conditions upon issuance. The FAA is requesting comments to allow interested persons to submit views that may not have been submitted in response to the prior opportunities for comment described above.

List of subjects in 14 cfr part 25

Aircraft, Aviation safety, Reporting and recordkeeping requirements.

The authority citation for these special conditions is as follows:

Authority:

49 U.S.C. 106(g), 40113, 44701, 44702, 44704.

The Special Conditions

Accordingly, pursuant to the authority delegated to me by the Administrator, the following special conditions are issued as part of the type certification basis for Learjet Model LJ-200-1A10 airplanes.

1. General

For airplanes equipped with systems that affect structural performance, either directly or as a result of a failure or malfunction, the influence of these systems and their failure conditions on structural performance must be taken into account when showing compliance with the requirements of 14 CFR part 25, subparts C and D. The following criteria must be used for showing compliance with these special conditions for airplanes equipped with flight control systems, autopilots, stability augmentation systems, load alleviation systems, fuel management systems, and other systems that either directly or as a result of failure or malfunction affect structural performance.

(a) The criteria defined herein only address the direct structural consequences of the system responses and performances. They cannot be considered in isolation but should be included in the overall safety evaluation of the airplane. These criteria may in some instances duplicate standards already established for this evaluation. These criteria are only applicable to structures whose failure could prevent continued safe flight and landing. Specific criteria that define acceptable limits on handling characteristics or stability requirements when operating in the system degraded or inoperative mode are not provided in these special conditions.

(b) Depending upon the specific characteristics of the airplane, additional studies may be required that go beyond the criteria provided in these special conditions in order to demonstrate the capability of the airplane to meet other realistic conditions such as alternative gust or maneuver descriptions for an airplane equipped with a load alleviation system.

(c) The following definitions are applicable to these special conditions.

Structural performance: Capability of the airplane to meet the structural requirements of part 25.

Flight limitations: Limitations that can be applied to the airplane flight conditions following an in-flight occurrence and that are included in the flight manual (e.g., speed limitations, avoidance of severe weather conditions, etc.).

Operational limitations: Limitations, including flight limitations, that can be applied to the airplane operating conditions before dispatch (e.g., fuel, payload and Master Minimum Equipment List limitations).

Probabilistic terms: The probabilistic terms (probable, improbable, extremely improbable) used in these special conditions are the same as those used in § 25.1309.

Failure condition: The term failure condition is the same as that used in § 25.1309; however, these special conditions apply only to system failure conditions that affect the structural performance of the airplane (e.g., system failure conditions that induce loads, change the response of the airplane to inputs such as gusts or pilot actions, or lower flutter margins).

2. Effects of Systems on Structures

The following criteria will be used in determining the influence of a system and its failure conditions on the airplane structure.

(a)System fully operative. With the system fully operative, the following apply:

(1) Limit loads must be derived in all normal operating configurations of the system from all the limit conditions specified in subpart C (or defined by special condition or equivalent level of safety in lieu of those specified in Subpart C), taking into account any special behavior of such a system or associated functions or any effect on the structural performance of the airplane that may occur up to the limit loads. In particular, any significant nonlinearity (rate of displacement of control surface, thresholds, or any other system nonlinearities) must be accounted for in a realistic or conservative way when deriving limit loads from limit conditions.

(2) The airplane must meet the strength requirements of part 25 (static strength, residual strength), using the specified factors to derive ultimate loads from the limit loads defined above. The effect of nonlinearities must beinvestigated beyond limit conditions to ensure the behavior of the system presents no anomaly compared to the behavior below limit conditions. However, conditions beyond limit conditions need not be considered when it can be shown that the airplane has design features that will not allow it to exceed those limit conditions.

(3) The airplane must meet the aeroelastic stability requirements of § 25.629.

(b)System in the failure condition. For any system failure condition not shown to be extremely improbable, the following apply:

(1) At the time of occurrence, starting from 1-g level flight conditions, a realistic scenario including pilot corrective actions must be established to determine the loads occurring at the time of failure and immediately after failure.

(i) For static strength substantiation, these loads, multiplied by an appropriate factor of safety that is related to the probability of occurrence of the failure, are ultimate loads to be considered for design. The factor of safety is defined in Figure 1.

[The GPO has not yet made images accessible. Image ER10FE12.000]

(ii) For residual strength substantiation, the airplane must be able to withstand two thirds of the ultimate loads defined in subparagraph 2(b)(1)(i) of these special conditions. For pressurized cabins, these loads must be combined with the normal operating differential pressure.

(iii) Freedom from aeroelastic instability must be shown up to the speeds defined in § 25.629(b)(2). For failure conditions that result in speeds beyond V C/M C, freedom from aeroelastic instability must be shown to increased speeds, so that the margins intended by § 25.629(b)(2) are maintained.

(iv) Failures of the system that result in forced structural vibrations (oscillatory failures) must not produce loads that could result in detrimental deformation of primary structure.

(2) For the continuation of the flight. For the airplane, in the system failed state and considering any appropriate reconfiguration and flight limitations, the following apply:

(i) The loads derived from the following conditions (or defined by special condition or equivalent level of safety in lieu of the following conditions) at speeds up to V C/M C, or the speed limitation prescribed for the remainder of the flight, must be determined:

(A) The limit symmetrical maneuvering conditions specified in § 25.331 and in § 25.345.

(B) The limit gust and turbulence conditions specified in § 25.341 and in § 25.345.

(C) The limit rolling conditions specified in § 25.349 and the limit unsymmetrical conditions specified in § 25.367 and § 25.427(b) and (c).

(D) The limit yaw maneuvering conditions specified in § 25.351.

(E) The limit ground loading conditions specified in §§ 25.473, 25.491, 25.493(d) and 25.503.

(ii) For static strength substantiation, each part of the structure must be able to withstand the loads in paragraph 2(b)(2)(i) of these special conditions multiplied by a factor of safety depending on the probability of being in this failure state. The factor of safety is defined in Figure 2.

[The GPO has not yet made images accessible. Image ER10FE12.001]

Q j= (T j)(P j)

Where:

T j= Average time spent in failure condition j (in hours)

P j= Probability of occurrence of failure mode j (per hour)

Note:

If P j is greater than 10−3 per flight hour, then a 1.5 factor of safety must be applied to all limit load conditions specified in Subpart C.

(iii) For residual strength substantiation, the airplane must be able to withstand two thirds of the ultimate loads defined in paragraph 2(b)(2)(ii) of these special conditions. For pressurized cabins, these loads must be combined with the normal operating differential pressure.

(iv) If the loads induced by the failure condition have a significant effect on fatigue or damage tolerance, then their effects must be taken into account.

(v) Freedom from aeroelastic instability must be shown up to a speed determined from Figure 3. Flutter clearance speeds V′ and V″ may be based on the speed limitation specified for the remainder of the flight using the margins defined by § 25.629(b).

[The GPO has not yet made images accessible. Image ER10FE12.002]

V1' = Clearance speed as defined by § 25.629(b)(2).

V'' = Clearance speed as defined by § 25.629(b)(1).

Q j= (T j)(P j)

Where:

T j= Average time spent in failure condition j (in hours)

P j= Probability of occurrence of failure mode j (per hour)

Note:

If P j is greater than 10 [3] per flight hour, then the flutter clearance speed must not be less than V″.

(vi) Freedom from aeroelastic instability must also be shown up to V′ in Figure 3 above for any probable system failure condition combined with any damage required or selected for investigation by § 25.571(b).’ ”

(3) Consideration of certain failure conditions may be required by other sections of part 25 regardless of calculated system reliability. Where analysis shows the probability of these failure conditions to be less than 10 [9] , criteria other than those specified in this paragraph may be used for structural substantiation to show continued safe flight and landing.

(c)Failure indications. For system failure detection and indication, the following apply:

(1) The system must be checked for failure conditions, not extremely improbable, that degrade the structural capability below the level required by part 25 or significantly reduce the reliability of the remaining system. As far as reasonably practicable, the flight crew must be made aware of these failures before flight. Certain elementsof the control system, such as mechanical and hydraulic components, may use special periodic inspections, and electronic components may use daily checks, in lieu of detection and indication systems to achieve the objective of this requirement. These certification maintenance requirements must be limited to components that are not readily detectable by normal detection and indication systems and where service history shows that inspections will provide an adequate level of safety.

(2) The existence of any failure condition, not extremely improbable, during flight that could significantly affect the structural capability of the airplane and for which the associated reduction in airworthiness can be minimized by suitable flight limitations, must be signaled to the flight crew. For example, failure conditions that result in a factor of safety between the airplane strength and the loads of Subpart C below 1.25, or flutter margins below V″, must be signaled to the crew during flight.

(d)Dispatch with known failure conditions. If the airplane is to be dispatched in a known system failure condition that affects structural performance, or affects the reliability of the remaining system to maintain structural performance, then the provisions of these special conditions must be met, including the provisions of paragraph 2(a) for the dispatched condition, and paragraph 2(b) for subsequent failures. Expected operational limitations may be taken into account in establishing P j as the probability of failure occurrence for determining the safety margin in Figure 1. Flight limitations and expected operational limitations may be taken into account in establishing Q j as the combined probability of being in the dispatched failure condition and the subsequent failure condition for the safety margins in Figures 2 and 3. These limitations must be such that the probability of being in this combined failure state and then subsequently encountering limit load conditions is extremely improbable. No reduction in these safety margins is allowed if the subsequent system failure rate is greater than 10 [3] per hour.

For each system for which these special conditions are applied, the following must be identified for showing compliance:

(a) The system that either directly or as a result of failure or malfunction affects structural performance;

(b) The failure condition of the system and the probability of that failure;

(c) The structure whose performance is affected directly or as a result of failure or malfunction of the system; and,

(d) The loading condition(s) on the structure affected by the system.

Issued in Renton, Washington, on February 3, 2012. Ali Bahrami,

Manager, Transport Airplane Directorate, Aircraft Certification Service.

References

Loading most recent entriesloading

Feedback